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Potential effects on effective attraction between probes diffusing in colloidal crystal
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Considering the significant influence of interparticle potentials on traditional depletion forces, we here employ
computer simulations to investigate how varying potentials between particles affect the effective interaction
of probes diffusing freely in a 2D colloidal crystal. Our results reveal that attractive potentials between the
background particles and probes significantly modify the interprobe effective interactions, whereas long-range
repulsive tails among the background particles have minimal impact. Furthermore, we observe contrary temper-
ature dependencies of the effective force for soft and stiff repulsions between the background particles. These
findings provide deeper insights into how direct interparticle potentials shape entropic-dominated effective forces
mediated by colloidal crystals.
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I. INTRODUCTION

Depletion force refers to an effective attraction between
large mesoscopic objects mediated by a bath of smaller
mesoscale particles (depletants) [1,2]. It provides a crucial
avenue for directing self-assembly [3,4], and controlling the
stability [5,6] and phase behavior [7,8] of complex fluids. The
depletion attraction mainly arises from the gain in system en-
tropy dominated by the depletants, by compressing the phase
space of the large particles, and is therefore called an entropic
force. While, direct interaction potentials between particles
have been revealed to significantly influence the depletion
force [9–13].

Given that the depletion-type entropic attraction is ubiq-
uitous and paramount in shaping the equilibrium properties
of large objects suspended in a fluid of smaller mesoscale
particles, an interesting and opposite situation emerges when
small mesoscopic probes move in a crystal composed of large
colloidal particles. In a very recent work [14], we have shown
that small purely-repulsive probes, diffusing freely in a two-
dimensional fluctuating colloidal lattice whose constituents
also interact repulsively with the probes, can experience ef-
fective attractions. This phenomenon is reminiscent of Cooper
pairs of electrons in superconductors, where the background
ions also maintain a stable and fluctuating lattice [15,16].
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Furthermore, we found that the colloidal lattice background-
induced effective attraction is entropically dominant. This
novel entropic force arises from the fact that the background
colloidal particles vibrating around the lattice sites can ac-
quire more vibrational entropy by bringing smaller probes
closer together, thereby decreasing the effective deformation
of the crystalline lattice. Compared to the traditional deple-
tion forces in fluid backgrounds, an unexplored fundamental
issue is how direct interparticle potentials change the ef-
fective interactions between probes diffusing in a colloidal
crystal.

In this work, we perform computer simulations to sys-
tematically study how interparticle potentials affect the
entropy-originated effective interactions between the small
probes in a 2D colloidal crystal background. In simula-
tions, we consider different types of repulsive and attractive
potentials to describe direct interactions between the large
background particles and small probes, and tune the range
and depth of the attractive well extensively. We find that, in
general, the attractive potential between the background parti-
cle and probe significantly modifies the interprobe effective
interaction. Additionally, we vary the long-range repulsion
between the background particles while maintaining iden-
tical short-range hard-core repulsion. Our results indicate
that the long-range repulsive tail has negligible influence
on the interprobe effective attraction. Finally, we investi-
gate the temperature dependence of the effective force for
varying repulsive potentials between the background par-
ticles and find that soft and stiff repulsions can lead to
opposite dependencies of the effective force on the system
temperature.
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FIG. 1. (a) Simulation snapshot of 9 red small probes diffusing in
a crystalline lattice background with a lattice constant L/σl = 1.052,
where the radius of the large background particles defines the basic
length scale (1 unit). In the inset, a schematic diagram illustrates
how neighboring cells are determined relative to the red triangle
at the center. The large grey particles represent the background
particles and the small cyan beads denote the centers of triangular
cells. Neighbors from 1 to 10 are labeled with digits and different
colors [14]. The schematic diagrams in (b) and (c) illustrate lattice
distortion, where the bond length is elongated to xd = x + δx from
x due to probe invasion. Furthermore, when two probe particles are
situated in nearest-neighbor cells, two elongated bonds merge into
one.

II. SIMULATION METHOD

In our simulations, we model the diffusion of several small
tracers within a fluctuating two-dimensional lattice composed
of 400 large particles, as shown in Fig. 1(a). The diameter
of the large background particles is set to σl = 2, with the
radius defined as the basic length scale (1 unit). The di-
ameter of the tracers is set to one-fourth of this, σs = 0.5,
consistent with the bidisperse polystyrene particles used in
our previous experiments [14]. The interaction between parti-
cles is modeled using the Weeks-Chandler-Andersen (WCA)
potential [17]:

UWCA(r) =
{

4ε
[(

σ
r

)2n − (
σ
r

)n] + ε r � rc,

0 r > rc.
(1)

This potential is derived from the Mie potential [18],
a generalization of the Lennard-Jones potential, and has
been modified to be purely repulsive [19]. Here, ε = kBT

represents the interaction intensity, and rc = 21/nσ is the
cutoff radius, where the interaction diameters σ are σl , σs,
and (σl + σs)/2 for large-large, small-small, and large-small
particles, respectively. Unless stated otherwise, the stiffness
coefficient is set as nll = 12 and nls = 12 for background-
background and background-tracer particle interactions to
model stronger short-range repulsion [20,21], while nss = 2 is
used for tracer-tracer interactions to describe relatively softer
repulsion. The selection of the stiffness coefficient is based
on empirical interactions from previous experiments [14,22],
which are detailed in the Supplemental Material [23]. The
dynamics of all particles follow the overdamped Langevin
equation γ v = Fr + η under periodic boundary conditions,
with γ the friction coefficient, Fr the steric interaction force,
and η the Gaussian distributed stochastic force having 〈η〉 = 0
and 〈ηα (t )ηβ (t ′)〉 = 2kBT γ δαβδ(t − t ′).

The background particles initially form a hexagonal ar-
rangement with a lattice constant of L/σl = 1.052 and an
area fraction of 0.82. For roughly equivalent hard disks, the
lattice is only slightly perturbed by thermal fluctuations, with-
out defects. The tracers are initially distributed randomly.
The equations of motion are integrated with a time step
	t = 10−5 × γ σ 2

l /2ε and 108 steps are performed to relax
the initialized system, followed by 3 × 109 steps to compute
the relevant physical quantities. To measure the probability
of finding a tracer pair in triangular lattice cells with differ-
ent separations, we use the same scheme as in our previous
study [14] [see the inset of Fig. 1(a)]. For any reference
cell in the lattice, indicated by the red cell at the center,
we identify equivalently positioned neighboring cells based
on their center-to-center distance from the reference cell and
highlight them with identical colors. The relative probability
of finding a tracer pair in mth nearest neighbor cell is then
described by

P(m) =
∑

i∈m
1

gss (r)/
∑

i∈1···10
1

gss (r)

D(m)/
∑10

m=1 D(m)
. (2)

Here, the probability is normalized by the cell degeneracy
D(m). To eliminate the effect of direct interactions between
the probes, a factor of 1/gss(r) is multiplied to the countings
of probe pairs with separation r, where gss(r) is the radial dis-
tribution function of the probes measured in dilute solutions
without the background lattice.

We would like to highlight that the discrete relative prob-
ability P(m) at various cell separations, rather than the
traditionally used radial distribution function gss(r), correctly
captures the effective interactions between tracers within
a crystalline background. The conventional tracer gss(r)
is typically calculated under the assumption of isotropic
and homogeneous conditions, which may result in mis-
leading indications of artificial attraction when applied to
a lattice background. A comprehensive explanation of this
distinction is provided in the Supplemental Material of
Ref. [14] by Liu et al. Furthermore, P(0) is not dis-
played in this work because two tracers hardly occupy the
same triangular cell, as this would require very large lattice
deformation.
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FIG. 2. (a) The potential interaction between the large back-
ground particle and small tracer is modelled by combining the
WCA potential with an attractive tail. (b) Relative probabilities of
finding tracer pairs in neighboring cells from 1 to 10, with peak
values depicted across various (c) potential depths and (e) widths.
(d) Schematic diagram illustrating neighboring large background
particles, enumerated 1st to 4th, relative to the red small tracer, dis-
tinguished by digits and different colors. Colored vertical lines with
shadows in (e) signify average distances with associated standard
errors between the diffusing tracer and the four types of neighboring
large particles. Here, the basic units of energy and length are kBT and
σl/2, respectively.

III. RESULTS AND DISCUSSION

A. The effects of potential between background
particle and probe

1. Connecting the purely repulsive WCA potential
with an attractive tail

In our previous work [14], all interparticle interactions
employed in the simulations are considered repulsive in order
to mimic like-charge couplings between colloidal particles.
Nevertheless, another more typical potential interaction be-
tween colloidal particles often contains a hard-core repulsion
together with an attractive tail, as in the recent experiment
by Mondal et al. [24]. To model this properly, we incor-
porate an adjustable attractive function into the unchanged
WCA repulsion. This approach allows us to describe the in-
teractions between the large background particles and small
tracers flexibly. In Fig. 2(a), several potential curves are
depicted with the stiffness parameter of the WCA poten-
tial set to nls = 12. The width and depth of the attractive
part are adjusted using fitting cubic functions of the form
Uls(r) = Ar3 + Br2 + Cr + D. The parameters A, B, C, and

D, corresponding to various widths and depths, are listed in
the Supplemental Material [23]. When adjusting the poten-
tial depth [colored lines in Fig. 2(a)], we fixed the potential

width at w = 2
1

nls (σl + σs)/2 + 0.3σl , where 2
1

nls (σl + σs)/2
represents the cutoff radius of the purely WCA repulsive in-
teraction between background and tracer particles, and 0.3σl

corresponds to the additional width of the attractive part.
Similarly, when adjusting the potential width [colored dotted
lines in Fig. 2(a)], we kept the potential depth constant at
d = ε. Meanwhile, the stiffness coefficient is set to nll = 12
for background-background particle interactions, and a repul-
sive soft potential is used to describe the interactions between
small tracers. The tracer-tracer interactive potential is derived
from experiments conducted in dilute solutions without any
large background particles [14] (see Supplemental Material
[23]). With this type of potentials, Fig. 2(b) displays the rel-
ative probabilities of finding tracer pairs in neighboring cells
from 1 to 10, which are similar to the observation obtained in
our previous work [14]. The peak values, P(1) in [Eq. (2)],
suggest that, despite the existence of attraction between the
large particles and small probes, the fluctuating lattice can
cause two probes to locate in neighboring triangular cells,
indicating the presence of an effective attraction between the
probes. The microscopic mechanism is illustrated in Figs. 1(b)
and 1(c), where the presence of a tracer elongates the bond
closest to it from x to xd = x + δx, incurring a penalty for
elastic free energy. The system then minimizes its total free-
energy cost by moving two distant tracers into neighboring
cells that share an elongated bond.

When adjusting the potential depth, Fig. 2(c) illustrates
a monotonically decreasing peak value. As per previous
findings [14], a pure hard-core repulsion typically induces
significant attraction between tracers driven by entropy.
Therefore, it is reasonable to anticipate that the decrease in
the peak value with the potential depth is due to the increasing
importance of potential energy in competing with entropy. On
one hand, from Fig. 1(c), the effective inter-tracer attraction
stems from minimizing the free-energy cost, leading to the
merging of two elongated bonds into one. On the other hand,
the introduction of an attractive potential creates a trough in
the triangular center of the potential energy landscape, encour-
aging tracers to diffuse toward the center of the triangular cell.
As a result, deepening the attractive well decreases the entropy
gain from minimizing the lattice deformation and thus reduces
the peak value (effective attraction).

A nonmonotonic change in the peak value occurs with
increasing the attractive potential width [Fig. 2(e)], in which
a steep drop in P(1) is noticeable when the pure hard-core
repulsive potential is combined with a short-range attractive
term. This drop is similar to the depth dependence in Fig. 2(c).
The key distinction lies in the more localized and steeper
nature of the attraction landscape, such that the probe more
likely stays around the center of the trough area, thereby inten-
sifying the decrease of P(1). As the potential width increases,
and the potential energy landscape becomes smoother, the
peak value of the relative probability gradually recovers to
its highest point. To illustrate this behavior, we categorize
neighboring large particles relative to the reference red tracer
in the center triangular unit based on their center-to-center
distances, as shown in Fig. 2(d). The average distances,
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along with standard errors, between the diffusing tracer and
these fluctuating background particles are represented by col-
ored vertical lines in Fig. 2(e). Interestingly, the potential
width corresponding to the recovery of the highest P(1) pre-
cisely aligns with the average distance between the diffusing
tracer and the second-neighboring background particles. This
suggests that the slightly long-ranged attractive interaction
between the tracer and the second-neighboring large particles
significantly smooths the potential landscape surrounding the
tracers. Further increase in the potential width may induce
minor fluctuations in the peak value, meaning a diminishing
effect of the long-ranged attractive term on the inter-tracer
attractions.

2. A LJ–like potential with a natural truncation

In colloidal simulations, the Lennard-Jones (LJ) potential
has been extensively used. Note that the potential energy
curves depicted in Fig. 2(a) are different from the LJ potential,
since the hard-core repulsion of the LJ potential simultane-
ously experiences a change when tuning its attractive well.
To be complete, we also investigate the potential dependence
of the effective interaction by using an LJ–like potential pro-
posed by Frenkel et al. [25–29] to characterize interactions
between background and tracer particles,

φ(r) = dα

[(
σ

r

)2

− 1

][(
w

r

)2

− 1

]2

, (3)

with

α = 2

(
w

σ

)2
[

3

2
((

w
σ

)2 − 1
)
]3

. (4)

Here, the benchmark potential depth and width are speci-
fied as d = ε and w = 1.15σl , respectively. By construction,
the range of this LJ–like potential is exactly finite and
hence has a natural truncation instead of a hard truncation,
as plotted in Figs. 3(a) and 3(b). Here, purely repulsive
WCA potential is employed to model interactions between
background-background and tracer-tracer particles, with nll =
12 and nss = 2. Figures 3(c) and 3(d) show the corresponding
peak values of relative probability of the probe pair. Inter-
estingly, the behavior observed differs from that shown with
the fitted cubic functions [Fig. 2(a)], due to significant differ-
ences in potential morphology and second derivatives between
Figs. 2(a) and 3(a). In Fig. 2(a), adjusting the attractive tail
leaves the WCA part fixed. However, in Fig. 3(a), both the
repulsive and attractive components change simultaneously,
where the repulsive part becomes steeper as the potential
depth increases, while a longer attractive range smoothens the
repulsion, as illustrated in Fig. 3(b).

For the WCA and attractive tail potential, the deeper trough
at the triangular center of the potential energy landscape
encourages tracers to diffuse toward the center, hindering
elongated bond sharing and reducing free-energy savings.
This results in a decrease in peak values with increasing
potential depth, as shown in Fig. 2(c). In contrast, the LJ–
like potential in Fig. 3(a) changes both its repulsive and
attractive parts simultaneously, where a steeper repulsive in-
teraction emerges when increasing the attraction depth. Since
the lattice-induced inter-tracer interactions are driven primar-

FIG. 3. The Frenkel potential, characterized by different
(a) depths and (b) widths, models interactions between large
background and small tracer particles. Peak values of relative
probabilities for finding a tracer pair in neighboring cells are
depicted across various (c) potential depths and (d) widths.

ily by entropy through hard-core interactions [14], the larger
anharmonicity in the LJ–like potential enhances the effective
attraction. This leads to the increase in peak values with the
LJ–like potential depth in Fig. 3(c), which is in stark contrast
to the trend seen in Fig. 2(c). Similarly, in Fig. 3(b), the steep-
ness of the repulsive part, and consequently the inter-tracer
attraction [Fig. 3(d)], decreases as the attractive potential
width increases.

B. The effects of potential between large background particles

1. A Yukawa–type long-range repulsive potential

After the background particle-probe potentials have been
systematically investigated, we now focus on the potential
interactions between the lattice background particles. Here,
we only consider purely repulsive background particles that
can form a stable and loose crystal in which the probes freely
diffuse. To adjust this repulsive potential, we combine the
unaltered WCA hard-core potential [Eq. (1)] with various
Yukawa–type long-range repulsions, while keeping the lattice
constant fixed:

UWCA(r) + ε

(
σl

r

)
exp

[
−λ

(
r − σl

σl

)]
. (5)

Here, the steepness and range of the Yukawa potential depend
sensitively on the screening parameter λ. Figure 4(a) depicts
several such combined potential curves, with the stiffness of
the WCA part set as nll = 12 and the interaction diameter
as σl = 2. The stiffness coefficient is set to nls = 12 for
background-tracer particle interactions, and the interactions
between small tracers are consistent with those in Fig. 2. The
constant peak value of the relative tracer pair probabilities
in neighboring cells [Fig. 4(b)] implies that the steepness of
the long-range soft repulsion, determined by λ, exerts min-
imal impact on the inter-tracer effective interactions. This
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FIG. 4. (a) Yukawa potential with different screening parameters
λ describes the long-range interactions among the large background

particles, combined with a fixed WCA potential for r < 2
1

nll σl .
(b) Peak values of the relative tracer pair probabilities in neighboring
cells versus the screening parameter λ.

observation contrasts with previous experimental studies [14],
where the charge quantity around colloidal surfaces directly
influenced the lattice constant. In our simulations, however,
both the lattice constant and the underlying WCA stiff-
ness remain unchanged. This finding again highlights the
importance of the short-range repulsion and hence the en-
tropic contribution in the lattice-induced interprobe effective
interactions.

2. The contrasting temperature dependencies of the effective
interaction for soft and stiff repulsions

Finally, we study the dependence of the interprobe ef-
fective attraction on the system temperature. By adjusting
the hard-core repulsion between large background particles,
we observe a counterintuitive phenomenon where the bound
tracers may not necessarily dissociate upon heating. As
shown in Fig. 5(a), the peak value increases with the tem-
perature, indicating a more pronounced aggregation of the
tracer pairs. Conversely, Fig. 5(b) demonstrates a weaken-
ing inter-tracer attraction when raising the temperature. This
disparity stems from the differing stiffness values: nll = 18
in Fig. 5(a) compared to nll = 6 in Fig. 5(b). In the cur-
rent setup, the attraction between tracers mainly arises from
entropic effects, where the tracers restrict the vibrations of
the crystal lattice. Consequently, at higher temperatures, the

FIG. 5. (a) Relative probabilities of finding a tracer pair in
neighboring cells from 1 to 10 at varying temperatures, with stiff-
ness parameters set to nll = 18, nls = 12, and nss = 2. (b) Relative
probabilities at different temperatures, with the same simulation pa-
rameters as (a) except for a lower stiffness coefficient of nll = 6.

increasing lattice vibration strengthens the binding between
the tracers, as there is a greater entropy gain for the lat-
tice with higher vibrational amplitudes. However, a softer
lattice with a lower WCA stiffness (nll = 6) results in the
expected disintegration-on-heating behavior, since in this case
the background lattice may gain additional configuration en-
tropy through local deformations. The attractive interaction
diminishes as the temperature rises from 0.5kBT to 0.9kBT ,
as depicted in Fig. 5(b). At higher temperatures, the softer
lattice becomes significantly distorted and develops defects.
Neither the g(r) method, which assumes isotropic and homo-
geneous conditions, nor the binning approach, which assumes
a defect-free lattice as shown in Fig. 1(a), can accurately cap-
ture the defective lattice-induced interactions between tracer
pairs. Overall, the potential stiffness between the background
particles directly influences the temperature dependence of
the effective interprobe attraction in a fluctuating lattice
background.

IV. CONCLUSIONS

We explore the potential effects on the lattice-induced
inter-tracer attraction, considering the interactions between
the background particles and small probes, as well as those
among large background particles. Our findings reveal that
the attractive interaction between background and tracer par-
ticles leads to noticeable changes in the probability of finding
tracer pairs in nearest-neighboring cells. Nevertheless, the
inter-tracer effective attraction still is predominantly governed
by the hard-core repulsion. Moreover, we observe that a
long-range soft repulsion between the background particles
does not significantly affect the inter-tracer effective interac-
tion, given that there is an identical short-ranged hard-core
repulsion. Noticeably, the change in the stiffness of the hard-
core repulsion between the background particles is found to
directly dictate the thermal response of the inter-tracer attrac-
tion. The present study unveils the subtle competition between
the potential energy and entropy in the lattice-induced ef-
fective interactions between freely diffusing tracers, thus
providing a comprehensive understanding of its origin and
properties.
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